Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

$\mathrm{Na}_{2}\left[\mathrm{BeB}_{2} \mathrm{O}_{5}\right]$

Wei Li and Ning Ye*

Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
Correspondence e-mail: nye@fjirsm.ac.cn

Received 8 June 2007; accepted 13 June 2007

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{O}-\mathrm{B})=0.001 \AA$; R factor $=0.022 ; w R$ factor $=0.059$; data-to-parameter ratio $=10.2$.

Single crystals of disodium beryllodiborate have been obtained by spontaneous nucleation from a high-temperature melt. $\mathrm{Na}_{2}\left[\mathrm{BeB}_{2} \mathrm{O}_{5}\right]$ adopts a new structure type and contains $\left[\mathrm{BeB}_{2} \mathrm{O}_{7}\right]^{6-}$ rings as building units that are made up from one BeO_{4} tetrahedron and two BO_{3} triangles. These rings are further condensed and form $\left\{\left[\mathrm{BeB}_{2} \mathrm{O}_{5}\right]^{2-}\right\}_{\infty}$ two-dimensional layers extending parallel to the $a b$ plane with the Na^{+}cations in a $[6+1]$ coordination located between the layers. All atoms except Be and an O atom (both with site symmetry .2) are in general positions.

Related literature

Nonlinear optical (NLO) applications of borate crystals with trigonal BO_{3} anions have been discussed by Chen et al. (1999). Among this group of compounds, beryllium borates are reported to exhibit the shortest transmission cut-off wavelength (Li, 1989). A review of the geometry of the BO_{3} group is given by Zobetz (1982), and a similar configuration of the $\left[\mathrm{BeB}_{2} \mathrm{O}_{7}\right]^{6-}$ unit is found in $\mathrm{LiB}_{3} \mathrm{O}_{5}$ (LBO) (Chen et al., 2005), where $\left[\mathrm{B}_{3} \mathrm{O}_{7}\right]^{5-}$ rings are present.

Experimental

Crystal data

$\mathrm{Na}_{2}\left[\mathrm{BeB}_{2} \mathrm{O}_{7}\right]$
$M_{r}=156.61$
Monoclinic, $C 2 / c$
$a=5.8117$ (5) A
$b=8.1666$ (7) \AA
$c=8.9830$ (8) A
$\beta=99.665(14)^{\circ}$

Data collection

[^0]$$
V=420.30(7) \AA^{3}
$$
$$
Z=4
$$

Mo $K \alpha$ radiation
$\mu=0.39 \mathrm{~mm}^{-1}$
$T=293$ (2) K
$0.12 \times 0.10 \times 0.05 \mathrm{~mm}$

Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
$T_{\text {min }}=0.866, T_{\text {max }}=0.884$
(expected range $=0.961-0.981)$
1621 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.059$
$S=1.17$
489 reflections

48 parameters
$\Delta \rho_{\max }=0.22 \mathrm{e} \AA^{-3}$
489 independent reflections 450 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.014$
$\Delta \rho_{\text {min }}=-0.18 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

$\mathrm{Na}-\mathrm{O}^{2}{ }^{\text {i }}$	2.3279 (10)	$\mathrm{Na}-\mathrm{O} 1$	2.8197 (10)
$\mathrm{Na}-\mathrm{O}^{1 i}$	2.3402 (9)	$\mathrm{B}-\mathrm{O} 1$	1.3529 (15)
$\mathrm{Na}-\mathrm{O} 1^{\text {iii }}$	2.4203 (10)	$\mathrm{B}-\mathrm{O} 2^{\text {ii }}$	1.3675 (15)
$\mathrm{Na}-\mathrm{O} 3$	2.4824 (10)	$\mathrm{B}-\mathrm{O}^{\text {v }}$	1.4123 (14)
$\mathrm{Na}-\mathrm{O}_{2}{ }^{\text {iv }}$	2.5473 (9)	$\mathrm{Be}-\mathrm{Ol}^{\text {vi }}$	1.6391 (14)
$\mathrm{Na}-\mathrm{O} 2$	2.6243 (9)	$\mathrm{Be}-\mathrm{O}^{\text {vii }}$	1.6584 (14)
$\mathrm{O} 1-\mathrm{B}-\mathrm{O} 2^{\text {ii }}$	123.15 (11)	$\mathrm{O} 1-\mathrm{Be}-\mathrm{O}^{\text {vii }}$	109.86 (4)
$\mathrm{O} 1-\mathrm{B}-\mathrm{O}^{\text {v }}$	120.16 (11)	$\mathrm{O} 1-\mathrm{Be}-\mathrm{O}^{\text {iv }}$	111.37 (4)
$\mathrm{O} 22^{\mathrm{ii}}-\mathrm{B}-\mathrm{O}^{\text {v }}$	116.70 (11)	$\mathrm{O} 2{ }^{\text {vii }}-\mathrm{Be}-\mathrm{O}^{\text {iv }}$	107.07 (12)
$\mathrm{O} 1-\mathrm{Be}-\mathrm{O}^{\text {vi }}$	107.35 (12)		

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $-x, y,-z+\frac{1}{2}$; (iii) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$; (iv)
$x-\frac{1}{2}, y-\frac{1}{2}, z$; (v) $x-\frac{1}{2}, y+\frac{1}{2}, z$; (vi) $-x-1, y,-z+\frac{1}{2}$; (vii) $-x-\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$.
Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: enCIFer (Allen et al., 2004).

This material is based upon work supported by the Science and Technology Foundation of Fujian Province under grant No. 2005 H 046 and the National Science Foundation of China under grant No. 60608018.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2126).

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Brandenburg, K. (2004). DIAMOND. Version 3.0. Crystal Impact GbR, Bonn, Germany.
Chen, C. T., Lin, Z. S. \& Wang, Z. Z. (2005). Appl. Phys. B Lasers Opt. 80, 125.

Chen, C. T., Ye, N., Lin, J., Jiang, J., Zeng, W. R. \& Wu, B. C. (1999). Adv. Mater. 11, 1071-1078.
Li, R. K. (1989). J. Non-Cryst. Solids, 111, 199-204.
Rigaku (2000). CrystalClear. Version 1.3. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zobetz, E. (1982). Z. Kristallogr. 160, 81-92.

supplementary materials

Acta Cryst. (2007). E63, i160 [doi:10.1107/S1600536807028942]

$\mathrm{Na}_{2}\left[\mathrm{BeB}_{2} \mathrm{O}_{5}\right]$

W. Li and N. Ye

Comment

Borate crystals containing parallell aligned BO_{3} anions are predicted to have large nonlinear optical (NLO) coefficients, moderate birefringence and wide transparency in the UV region. Therefore they are considered to be good candidates for NLO applications (Chen et al., 1999). Based on a theoretical study, beryllium borates possess the largest energy gap among all alkaline and alkaline earth borates, and hence the shortest transmission cut-off wavelength (Li, 1989). Therefore, beryllium borates are studied intensively with the purpose of searching for new NLO materials in the UV region. The title compound, $\mathrm{Na}_{2}\left[\mathrm{BeB}_{2} \mathrm{O}_{5}\right]$, (I), was found from the investigation of the pseudo-ternary system $\mathrm{Na}_{2} \mathrm{O}-\mathrm{BeO}-\mathrm{B}_{2} \mathrm{O}_{3}$.

A perspective view of the structure of (I) along the a direction is shown in Fig.1. The Be atoms are bonded to four O atoms to form slightly distorted BeO_{4} tetrahedra (site symmetry. 2). The $\mathrm{Be}-\mathrm{O}$ bonds can be classified into two groups with different bond lengths of 1.6391 (14) \AA for $\mathrm{Be}-\mathrm{O} 1$ and 1.6584 (14) \AA for $\mathrm{Be}-\mathrm{O} 2$. The $\mathrm{O}-\mathrm{Be}-\mathrm{O}$ angles vary from 107.07 (12) to $111.37(4)^{\circ}$, indicating a slight distortion from the ideal tetrahedron. The B atoms are coordinated to three O atoms to form planar BO_{3} triangles with a mean $\mathrm{B}-\mathrm{O}$ bond length of $1.378 \AA$ (Table 1) and $\mathrm{O}-\mathrm{B}-\mathrm{O}$ angles ranging from 116.70 (11) to $123.15(11)^{\circ}$, which is in good agreement with the results of geometric studies for the triangular BO_{3} group (Zobetz, 1982). Two BO_{3} groups, slightly tilted against each other, share one O 3 atom, and each of them also share a different O 1 atom with a BeO_{4} tetrahedron to form a six-membered $\left[\mathrm{BeB}_{2} \mathrm{O}_{7}\right]^{6-}$ ring (Fig. 2). These $\left[\mathrm{BeB}_{2} \mathrm{O}_{7}\right]^{6-}$ rings are further condensed, resulting in $\mathrm{a}\left[\mathrm{BeB}_{2} \mathrm{O}_{5}\right]_{\infty}{ }^{2-}$ layer parallel to the $a b$ plane. Between adjacent $\left[\mathrm{BeB}_{2} \mathrm{O}_{5}\right]_{\infty}{ }^{2-}$ layers the Na^{+}cations are located in a $[6+1]$ coordination, with one considerably longer $\mathrm{Na}-\mathrm{O}$ bond of $2.8197(10) \AA($ Table 1$)$.

The conformation of the $\left[\mathrm{BeB}_{2} \mathrm{O}_{7}\right]^{6-}$ rings is similar to that of the $\left[\mathrm{B}_{3} \mathrm{O}_{7}\right]^{5-}$ units in $\mathrm{LiB}_{3} \mathrm{O}_{5}(\mathrm{LBO})($ Chen et al., 2005), with the BO_{4} tetrahedron replaced by a BeO_{4} tetrahedron. From the study of LBO , it is known that the $\left[\mathrm{B}_{3} \mathrm{O}_{7}\right]^{5-}$ group can yield large NLO effects and short UV transmission cut-offs, but the spatial arrangement of the helical $\left[\mathrm{B}_{3} \mathrm{O}_{5}\right]_{\infty}$ chains along the c axis is unfavorable for the generation of a large birefringence. Therefore, compounds with a $\left[\mathrm{BeB}_{2} \mathrm{O}_{5}\right]_{\infty}$ layer structure may be good candidates for deep UV NLO applications. Unfortunately, in the case of (I), the direction of the $\left[\mathrm{BeB}_{2} \mathrm{O}_{7}\right]^{6-}$ groups in the two adjacent layers are completely opposite, and thus their contributions to the NLO effect are eliminated.

Experimental

Single crystals of compound (I) were grown using a $\mathrm{Na}_{4} \mathrm{~B}_{2} \mathrm{O}_{5}$ flux. The composition of the mixture for crystal growth was 2:1:3 of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (Hongguang Materials, 99.8%), BeO (Shuikoushan Materials, 99.8%), and $\mathrm{H}_{3} \mathrm{BO}_{3}$ (Jinghua Materials, 95%). This mixture was heated in a Pt crucible to 1073 K , held at this temperature for several hours, and then cooled at a rate of $3 \mathrm{~K} \mathrm{~h}^{-1}$ from 1073 to 873 K . The remaining solified flux attached to the crystals was readily dissolved in water. Crystals with an average size of 0.5 mm and mostly block-shaped habit were obtained.

supplementary materials

Figures

Fig. 1. The structure of (I) in a projection approximately along the a axis with anisotropic displacement ellispoids drawn at the 60% probability level. Na - O bonds were omitted for clarity.

Fig. 2. $\left[\mathrm{BeB}_{2} \mathrm{O}_{7}\right]^{(6-)}$ building unit in compound (I).

disodium beryllodiborate

Crystal data

$\mathrm{Na}_{2}\left[\mathrm{BeB}_{2} \mathrm{O}_{5}\right]$	$F_{000}=304$
$M_{r}=156.61$	$D_{\mathrm{x}}=2.475 \mathrm{Mg} \mathrm{m}^{-3}$
	Mo Ka radiation
Monoclinic, $C 2 / c$	$\lambda=0.71073 \AA$
Hall symbol: -C 2 yc	Cell parameters from 616 reflections
$a=5.8117(5) \AA$	$\theta=2.3-27.5^{\circ}$
$b=8.1666(7) \AA$	$\mu=0.39 \mathrm{~mm}^{-1}$
$c=8.9830(8) \AA$	$T=293(2) \mathrm{K}$
$\beta=99.665(14)^{\mathrm{o}}$	Prism, colourless
$V=420.30(7) \AA^{3}$	$0.12 \times 0.10 \times 0.05 \mathrm{~mm}$
$Z=4$	

Data collection

Rigaku Mercury CCD
diffractometer
Radiation source: Sealed Tube
Monochromator: Graphite Monochromator
Detector resolution: 14.6306 pixels mm^{-1}
$T=293.1500 \mathrm{~K}$
CCD_Profile_fitting scans
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
$T_{\text {min }}=0.866, T_{\text {max }}=0.884$
489 independent reflections
450 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.014$

1621 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.059$
$S=1.17$
489 reflections
48 parameters

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0287 P)^{2}+0.2765 P\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.22 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.18$ e \AA^{-3}
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Na	$-0.01389(8)$	$0.30641(6)$	$0.42612(6)$	$0.0142(2)$
O 1	$-0.34432(14)$	$0.32884(10)$	$0.15850(10)$	$0.0113(2)$
O2	$0.16865(14)$	$0.58926(10)$	$0.37065(10)$	$0.0108(2)$
O3	0	$0.07376(14)$	0.25	$0.0140(3)$
B	$-0.3344(2)$	$0.49318(16)$	$0.17748(15)$	$0.0087(3)$
Be	-0.5	$0.2100(2)$	0.25	$0.0087(4)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Na	$0.0145(3)$	$0.0145(3)$	$0.0150(3)$	$-0.00079(18)$	$0.0065(2)$	$-0.00110(18)$
O 1	$0.0127(4)$	$0.0078(4)$	$0.0154(4)$	$-0.0005(3)$	$0.0082(3)$	$-0.0002(3)$
O 2	$0.0109(4)$	$0.0099(4)$	$0.0124(4)$	$0.0028(3)$	$0.0046(3)$	$0.0008(3)$
O 3	$0.0135(6)$	$0.0073(6)$	$0.0243(7)$	0	$0.0120(5)$	0
B	$0.0074(6)$	$0.0097(6)$	$0.0087(6)$	$0.0003(4)$	$0.0008(5)$	$0.0010(5)$
Be	$0.0090(9)$	$0.0064(9)$	$0.0115(10)$	0	$0.0043(8)$	0

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Na}-\mathrm{O}^{\mathrm{i}}$
2.3279 (10)
$\mathrm{O} 2-\mathrm{Na}^{\mathrm{i}}$
2.3279 (10)

$\mathrm{Na}-\mathrm{O} 1^{\text {ii }}$	2.3402 (9)	$\mathrm{O} 2-\mathrm{Na}^{\text {viii }}$	2.5473 (9)
$\mathrm{Na}-\mathrm{Ol}{ }^{\text {iii }}$	2.4203 (10)	$\mathrm{O} 3-\mathrm{B}^{\mathrm{v}}$	1.4123 (14)
$\mathrm{Na}-\mathrm{O} 3$	2.4824 (10)	O3- $\mathrm{B}^{\text {ix }}$	1.4123 (14)
$\mathrm{Na}-\mathrm{O} 2^{\text {iv }}$	2.5473 (9)	$\mathrm{O} 3-\mathrm{Na}^{\text {ii }}$	2.4824 (10)
$\mathrm{Na}-\mathrm{O} 2$	2.6243 (9)	$\mathrm{B}-\mathrm{O} 1$	1.3529 (15)
$\mathrm{Na}-\mathrm{B}^{\mathrm{v}}$	2.8128 (14)	$\mathrm{B}-\mathrm{O} 2{ }^{\text {ii }}$	1.3675 (15)
$\mathrm{Na}-\mathrm{B}^{\text {ii }}$	2.8145 (14)	$\mathrm{B}-\mathrm{O} 3^{\mathrm{x}}$	1.4123 (14)
$\mathrm{Na}-\mathrm{O} 1$	2.8197 (10)	$\mathrm{B}-\mathrm{Na}^{\mathrm{xi}}$	2.8128 (14)
$\mathrm{Na}-\mathrm{Be}^{\text {vi }}$	2.9000 (6)	$\mathrm{B}-\mathrm{Na}{ }^{\text {ii }}$	2.8145 (14)
$\mathrm{Na}-\mathrm{B}$	3.0639 (13)	$\mathrm{Be}-\mathrm{O} 1^{\text {xii }}$	1.6391 (14)
$\mathrm{Na}-\mathrm{Be}$	3.0991 (7)	$\mathrm{Be}-\mathrm{O} 2^{\text {v }}$	1.6584 (14)
$\mathrm{O} 1-\mathrm{Be}$	1.6391 (14)	$\mathrm{Be}-\mathrm{O}^{\text {iv }}$	1.6584 (14)
$\mathrm{O} 1-\mathrm{Na}^{\text {ii }}$	2.3402 (9)	$\mathrm{Be}-\mathrm{Na}^{\text {vi }}$	2.9000 (6)
$\mathrm{O} 1-\mathrm{Na}^{\text {vii }}$	2.4203 (10)	$\mathrm{Be}-\mathrm{Na}^{\text {vii }}$	2.9000 (6)
$\mathrm{O} 2-\mathrm{B}^{\mathrm{ii}}$	1.3675 (15)	$\mathrm{Be}-\mathrm{Na}^{\text {xii }}$	3.0991 (7)
$\mathrm{O} 2-\mathrm{Be}^{\text {viii }}$	1.6584 (14)		
$\mathrm{O} 2-\mathrm{Na}-\mathrm{O} 1^{\text {ii }}$	135.07 (4)	$\mathrm{Be}-\mathrm{O} 1-\mathrm{Na}$	83.58 (4)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Na}-\mathrm{O} 1^{\text {iii }}$	69.25 (3)	$\mathrm{Na}{ }^{\text {ii }}-\mathrm{O} 1-\mathrm{Na}$	75.89 (3)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Na}-\mathrm{O} 1^{\text {iii }}$	93.45 (3)	$\mathrm{Na}^{\text {vii }}-\mathrm{O} 1-\mathrm{Na}$	145.70 (4)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Na}-\mathrm{O} 3$	146.94 (3)	$\mathrm{B}^{\mathrm{ii}}-\mathrm{O} 2-\mathrm{Be}^{\text {viii }}$	120.32 (8)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Na}-\mathrm{O} 3$	74.16 (3)	$\mathrm{B}^{\mathrm{ii}}-\mathrm{O} 2-\mathrm{Na}^{\text {i }}$	147.49 (8)
$\mathrm{O} 1^{\text {iiii }}-\mathrm{Na}-\mathrm{O} 3$	98.53 (3)	$\mathrm{Be}^{\text {viii }}-\mathrm{O} 2-\mathrm{Na}^{\text {i }}$	91.79 (4)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Na}-\mathrm{O} 22^{\text {iv }}$	92.62 (3)	$\mathrm{B}^{\mathrm{ii}}-\mathrm{O} 2-\mathrm{Na}^{\text {viii }}$	86.32 (7)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Na}-\mathrm{O} 2^{\text {iv }}$	130.21 (3)	$\mathrm{Be}^{\text {viii }}-\mathrm{O} 2-\mathrm{Na}^{\text {viii }}$	92.48 (6)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Na}-\mathrm{O} 2{ }^{\text {iv }}$	91.58 (3)	$\mathrm{Na}^{\text {i }}-\mathrm{O} 2-\mathrm{Na}^{\text {viii }}$	87.38 (3)
$\mathrm{O} 3-\mathrm{Na}-\mathrm{O} 2{ }^{\text {iv }}$	56.11 (2)	$\mathrm{B}^{\mathrm{ii}}-\mathrm{O} 2-\mathrm{Na}$	83.32 (7)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Na}-\mathrm{O} 2$	92.78 (3)	$\mathrm{Be}^{\text {viii }}-\mathrm{O} 2-\mathrm{Na}$	115.71 (6)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Na}-\mathrm{O} 2$	57.28 (3)	$\mathrm{Na}-\mathrm{O} 2-\mathrm{Na}$	87.22 (3)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Na}-\mathrm{O} 2$	116.52 (3)	$\mathrm{Na}^{\text {viii }}-\mathrm{O} 2-\mathrm{Na}$	151.43 (4)
$\mathrm{O} 3-\mathrm{Na}-\mathrm{O} 2$	119.69 (3)	$\mathrm{B}^{\mathrm{v}}-\mathrm{O} 3-\mathrm{B}^{\text {ix }}$	124.46 (14)
$\mathrm{O} 22^{\text {iv }}-\mathrm{Na}-\mathrm{O} 2$	151.43 (4)	$\mathrm{B}^{\mathrm{v}}-\mathrm{O} 3-\mathrm{Na}$	88.00 (6)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Na}-\mathrm{O} 1$	110.32 (3)	$\mathrm{B}^{\mathrm{ix}}-\mathrm{O} 3-\mathrm{Na}$	138.43 (6)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Na}-\mathrm{O} 1$	103.51 (3)	$\mathrm{B}^{\mathrm{v}}-\mathrm{O} 3-\mathrm{Na}^{\text {ii }}$	138.43 (6)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Na}-\mathrm{O} 1$	152.30 (3)	$\mathrm{B}^{\text {ix }}-\mathrm{O} 3-\mathrm{Na}^{\text {ii }}$	88.00 (6)
$\mathrm{O} 3-\mathrm{Na}-\mathrm{O} 1$	66.22 (2)	$\mathrm{Na}-\mathrm{O} 3-\mathrm{Na}^{\text {ii }}$	80.12 (4)
$\mathrm{O} 22^{\text {iv }}-\mathrm{Na}-\mathrm{O} 1$	60.74 (3)	$\mathrm{O} 1-\mathrm{B}-\mathrm{O} 2{ }^{\text {ii }}$	123.15 (11)
$\mathrm{O} 2-\mathrm{Na}-\mathrm{O} 1$	91.15 (3)	$\mathrm{O} 1-\mathrm{B}-\mathrm{O}^{\mathrm{x}}$	120.16 (11)
$\mathrm{B}-\mathrm{O}-\mathrm{Be}$	122.68 (10)	$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{B}-\mathrm{O} 3^{\mathrm{x}}$	116.70 (11)
$\mathrm{B}-\mathrm{Ol}-\mathrm{Na}^{\text {ii }}$	95.57 (7)	$\mathrm{O} 1-\mathrm{Be}-\mathrm{O} 1^{\text {xii }}$	107.35 (12)
$\mathrm{Be}-\mathrm{Ol}-\mathrm{Na}^{\text {ii }}$	135.44 (7)	$\mathrm{O} 1-\mathrm{Be}-\mathrm{O}^{2}$	109.86 (4)
$\mathrm{B}-\mathrm{O} 1-\mathrm{Na}^{\text {vii }}$	124.34 (7)	$\mathrm{O} 1^{\mathrm{xii}}-\mathrm{Be}-\mathrm{O} 2^{\mathrm{v}}$	111.37 (4)

sup-4

supplementary materials

$\mathrm{Be}-\mathrm{O} 1 — \mathrm{Na}^{\text {vii }}$	$89.03(5)$	$\mathrm{O} 1-\mathrm{Be}-\mathrm{O} 2^{\text {iv }}$	$111.37(4)$
$\mathrm{Na}^{\text {ii }}-\mathrm{O} 1 — \mathrm{Na}^{\text {vii }}$	$86.55(3)$	$\mathrm{O}^{\text {vii }}-\mathrm{Be}-\mathrm{O}^{\text {iv }}$	$109.86(4)$
$\mathrm{B}-\mathrm{O} 1 — \mathrm{Na}$	$87.04(7)$	$\mathrm{O}^{\mathrm{v}}-\mathrm{Be}-\mathrm{O} 2^{\mathrm{iv}}$	$107.07(12)$

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $-x, y,-z+1 / 2$; (iii) $x+1 / 2,-y+1 / 2, z+1 / 2$; (iv) $x-1 / 2, y-1 / 2, z$; (v) $-x-1 / 2, y-1 / 2,-z+1 / 2$; (vi) $-x-1 / 2,-y+1 / 2,-z+1$; (vii) $x-1 / 2,-y+1 / 2, z-1 / 2$; (viii) $x+1 / 2, y+1 / 2, z$; (ix) $x+1 / 2, y-1 / 2, z$; (x) $x-1 / 2, y+1 / 2, z$; (xi) $-x-1 / 2, y+1 / 2$, $-z+1 / 2$; (xii) $-x-1, y,-z+1 / 2$.

Fig. 1

Fig. 2

[^0]: Rigaku Mercury CCD diffractometer

